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The phenomenon of Tollmien-Schlichting wave generation in a boundary layer by 
free-stream turbulence is analysed theoretically by means of asymptotic solution of 
the Navier-Stokes equations at large Reynolds numbers (Re + a). For simplicity 
the basic flow is taken to be the Blasius boundary layer over a flat plate. Free-stream 
turbulence is taken to be uniform and thus may be represented by a superposition 
of vorticity waves. Interaction of these waves with the flat plate is investigated first. 
It is shown that apart from the conventional viscous boundary layer of thickness 
O(Re-‘/*),  a ‘vorticity deformation layer’ of thickness O ( R C ’ / ~ )  forms along the flat- 
plate surface. Equations to describe the vorticity deformation process are derived, 
based on multiscale asymptotic techniques, and solved numerically. As a result it is 
shown that a strong singularity (in the form of a shock-like distribution in the wall 
vorticity) forms in the flow at some distance downstream of the leading edge, on the 
surface of the flat plate. This is likely to provoke abrupt transition in the boundary 
layer. With decreasing amplitude of free-stream turbulence perturbations, the singular 
point moves far away from the leading edge of the flat plate, and any roughness on 
the surface may cause Tollmien-Schlichting wave generation in the boundary layer. 
The theory describing the generation process is constructed on the basis of the 
‘triple-deck‘ concept of the boundary-layer interaction with the external inviscid flow. 
As a result, an explicit formula for the amplitude of Tollmien-Schlichting waves is 
obtained. 

1. Introduction 
Laminar-turbulent transition is an extraordinarily complicated process, consisting 

of a great number of competing events. The initial process is the transformation 
of external disturbances into internal instability oscillations of the boundary layer, 
taking the well-known form of Tollmien-Schlichting waves. In relatively quiet flows, 
the initial amplitude of these waves is insufficient to provoke immediate transition. 
Tollmien-Schlichting waves must first amplify in the boundary layer to trigger non- 
linear effects, characteristic of the transition process. Numerous experiments have 
clearly revealed that the extent of the amplification region, and hence the location 
of the ‘transition point’ on the body surface, is strongly dependent not only on the 
amplitude and/or the spectrum of external disturbances but also on their physi- 
cal nature. Some of the disturbances easily penetrate into the boundary layer and 
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turn into Tollmien-Schlichting waves; others do not. To study these differences, the 
boundary-layer receptivity to external disturbances was proposed by Morkovin (1969) 
as a key problem in the laminar-turbulent transition process. The main objective of 
the investigations in this field is the determination of the amplitudes of generated 
Tollmien-Schlichting waves, and as a result the elucidation of which types of external 
disturbances can more easily provoke Tollmien-Schlichting waves. 

From the mathematical point of view, the receptivity issue appears to be even 
more difficult than the stability problem. The latter is often associated with the 
solution of the Orr-Sornmerfeld equation, while the former involves the solution of a 
boundary value problem for the Navier-Stokes equations. To date, direct numerical 
simulation of the full Navier-Stokes equations appears to be exceedingly difficult as 
far as unstable boundary-layer flows at high Reynolds number are concerned. On the 
other hand, asymptotic methods are well-suited for this type of problem. 

The first paper where asymptotic techniques were used to solve a receptivity problem 
was published by Terent’ev ( 198 1). His analysis was devoted to Tollmien-Schlichting 
waves generated by a vibrator installed in the boundary layer on the body surface. 
The classical experiments of Dryden (1956) and Schubauer & Skramsted (1948) 
were the first to generate Tollmien-Schlichting waves in a wind tunnel by means of 
a vibrating ribbon. This technique is simple, and still used to provoke Tollmien- 
Schlichting waves. In the theoretical analysis of Terent’ev (1981), the role of the 
vibrator was modelled by a short, flexible section of the body surface, and to describe 
the Tollmien-Schlichting wave generation process, he used an unsteady version of 
triple-deck theory. It was shown previously by Lin (1946), Smith (1979) and Zhuk & 
Ryzhov (1980) that this provides the asymptotic description of Tollmien-Schlichting 
waves near the lower branch of the boundary-layer neutral stability curve. To satisfy 
the restrictions of triple-deck theory, the (non-dimensional) longitudinal extent t of 
the vibrating part of the body surface was chosen to be t = O(Re-3/s), while the (non- 
dimensional) frequency of oscillation cu = O(Re‘/4), where Re is Reynolds number. 
As a result of this analysis, an explicit formuIa may be obtained for the amplitude of 
a Tollmien-Schlichting wave propagating in the boundary layer, downstream of the 
vibrator. This problem was extended into the nonlinear regime by Duck (1985), a 
study which indicated that finite-time breakdowns are a common occurrence in flows 
of this type. This latter work was extended into the three-dimensional regime by 
Duck (1990). 

The problem of Tollmien-Schlichting wave generation by sound was first con- 
sidered by Fedorov (1982), who analysed the interaction of acoustic waves with 
a growing boundary layer on a flat-plate surface. As a result it was shown that 
the non-uniformity of the boundary-layer flow, being especially significant near the 
leading edge, leads to the scattering of acoustic waves into instability waves of the 
boundary layer. The generation of Tollmien-Schlichting waves via the interaction of 
an external acoustic field with a wall roughness element was investigated by Ruban 
( 1984) and independently by Goldstein (1985). Effective transformation of external 
disturbances into Tollmien-Schlichting waves is possible if resonance conditions are 
satisfied. For boundary-layer flows, the resonance between external disturbances and 
internal instability waves supposes coincidence not only of frequencies, but also of 
wavenumbers. This coincidence may easily be achieved in the problem considered 
by Terent’ev (1981) since the frequency of the vibrating section of the surface and 
its extent may be chosen independently. If an acoustic wave plays the role of the 
external perturbation, it is possible to choose its (non-dimensional) frequency to 
be cc) = O(Re‘/4), but then the wavelength of the disturbance is much larger than 
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that appropriate to Tollmien-Schlichting waves. In order to introduce the neces- 
sary lengthscale into the problem, Kuban (1984) and Goldstein (1985) supposed that 
the body surface was not absolutely smooth, and the acoustic wave interacts with 
a stationary disturbance provoked in the boundary layer by wall roughness. The 
effective generation of Tollmien-Schlichting waves was shown to take place if the 
(non-dimensional) length t! of the roughness is O(Re-3/s). Similar ideas have been 
used by Kyzhov & Timpfeev (1995), who analysed the interaction between a single 
vortex and local roughness. The above analysis was for a linearized, steady basic flow, 
together with a linearized unsteady perturbation. This problem was extended to the 
case of a non-linear steady, basic flow, subject to linearised unsteady perturbations 
by Bodonyi et al. (1989), whilst the fully non-linear version of this problem was 
treated by Duck (1988), who showed that finite-time breakdowns were likely for this 
problem, also. 

An extremely important paper by Goldstein (1983) considered how boundary-layer 
growth effects, interacting with acoustic free-stream waves could also account for the 
seeding of Tollmien-Schlichting waves, without the need for any form of flat-plate 
surface distortion. This paper showed how initially decaying eigensolutions then 
developed progressively smaller wavelengths downstream of the plate leading edge, 
and eventually the growing Tollmien-Schlichting mode is triggered. The work of 
Goldstein & Leib (1993a, b)  and Goldstein, Leib & Cowley (1992) is also relevant in 
this context. 

It is well known from experimental observations that the laminar-turbulent transi- 
tion process is sensitive not only to wall vibrations and/or acoustic fields, but is also 
strongly affected by free-stream turbulence. In the present paper Tollmien-Schlichting 
waves generated in boundary layers by external turbulent perturbations are analysed 
theoretically. The most ‘aggressive’ part of the turbulent spectrum, corresponding to 
vorticity waves with (non-dimensional) frequency o = O(Re1l4) is considered. Since 
the vorticity waves propagate along the boundary layer with the free-stream velocity, 
their (non-dimensional) wavelength 2 = O(Re-’/4) again appears to be much greater 
than the wavelength of Tollmien-Schlichting waves. For this reason it may be an- 
ticipated that wall irregularities, even if they are small, are very important for the 
Tollmien-Schlichting wave generation process. In the present paper the analysis is 
carried out for a single wall roughness element with (non-dimensional) longitudinal 
extent C = O(ReP3/*). Thus the formulation of the problem ($2) resembles that 
considered by Kuban (1984) and Goldstein (1985) for acoustic waves. The essential 
difference between acoustic and vorticity waves is that the latter do not create a pres- 
sure gradient at the outer edge of the boundary layer (assuming linear perturbations) 
and so do not provoke flow oscillations inside the boundary layer. 

The analysis is carried out for small-amplitude ( E )  of free-stream turbulence per- 
turbations. The paper consists of two major parts. In 93 the process of vorticity 
waves deforming near the flat-plate surface and their subsequent penetration into the 
boundary layer is investigated. The problem was first considered by Hunt & Graham 
(1978), who supposed that the free-stream turbulence is uniform and so may be 
represented as a superposition of sinusoidal vorticity waves. Since the corresponding 
velocity field does not automatically satisfy the impermeability condition on the flat- 
plate surface, the flow near the flat plate must be considered. Hunt & Graham (1978) 
carried out their analysis based on the inviscid Euler equations. With the assumption 
that the vorticity field is not influenced by the wall and so is just the same as in the 
free-stream, it is shown that a vortex layer forms along the flat plate. Its thickness is 
of the same order of magnitude as the (non-dimensional) wavelength of the vorticity 
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wave, namely 1 = O ( R ~ C ' / ~ ) .  Near the bottom of this layer, velocity fluctuations 
take on their maximum amplitudes, but the pressure gradient remains zero. Investi- 
gation of the flow inside the Blasius viscous boundary layer of thickness O(Re-'/*) 
was carried out by Guliaev et al. (1989). They found that velocity perturbations 
decay rapidly within an intermediate viscous layer located near the outer edge of the 
Blasius boundary layer. As a result of their analysis Guliaev et al. (1989) arrived 
at the conclusion that turbulent perturbations do not penetrate into the bulk of the 
boundary layer and for that reason Tollmien-Schlichting waves cannot be generated. 

In the present paper we will show that this conclusion is somewhat premature. 
As was pointed out by Kerschen (1991), generation of Tollmien-Schlichting waves 
may be associated not only with a penetration of external perturbations into the 
boundary layer and subsequent interaction of the boundary-layer oscillations with 
wall roughness, which is the case, for example, for the scattering of acoustic per- 
turbations into Tollmien-Schlichting waves. Tollmien-Schlichting waves may be also 
generated from the interaction of oncoming free-stream oscillations with stationary 
perturbations produced by wall roughness outside the boundary layer. While such 
an interaction is known to be very weak for other applications of triple-deck theory 
when all the notable perturbations are concentrated in the near-wall viscous sublayer 
(see, for example, Sychev et al. 1987), it might become the leading-order process if 
the boundary layer is exposed to external flow vorticity waves. Another effect that, 
despite its importance, has not been considered in previous studies is the vorticity 
field deformation near a rigid-body surface. It leads not only to the amplification 
of velocity oscillations at the outer edge of the boundary layer, but also to the 
formation of pressure oscillations in the inviscid turbulence deformation layer and, 
consequently, in the viscous flow inside the boundary layer. In $3 it is shown that the 
flow structure in the vicinity of the flat plate is four-tiered. It consists of (i) an inviscid 
vortex layer which will also be called the vorticity or turbulence deformation layer, 
its (non-dimensional) thickness being O(Re-'14), (ii) the Blasius boundary layer with 
thickness O(Re-'/*), (iii) a near-wall Stokes sublayer where y = O(Re-5/8) and (iv) an 
intermediate oscillatory shear layer of thickness dy = O[(Relog Re)-'/*] between the 
inviscid vortex layer and the Blasius boundary layer. 

The process of vorticity field deformation in the vortex layer is described by the 
Helmholtz equation (3.10) (all quantities are defined fully in $3) 

Here the role of time is played by the 'slow' spatial variable X measuring the distance 
along the flat plate on the scale which is E - ~  times longer than the wavelength of 
the vorticity wave. If the amplitude E of free-stream perturbations is O(Re-'14), 
then at a finite distance from the leading edge, this process leads to a singularity in 
the flow outside the boundary layer, which may be anticipated to cause an abrupt 
laminar-turbulent transition in the boundary layer. 

On the other hand, if the amplitude of external turbulence perturbations is small 
enough, the singular point moves downstream and the process of Tollmien-Schlichting 
wave generation appears to be important. This is investigated in $4 where the flow 
in the vicinity of wall roughness is considered on the basis of triple-deck theory. It is 
interesting that in the present case nonlinear effects leading to Tollmien-Schlichting 
wave generation take place in the upper deck of the triple-deck structure, while the 
near-wall viscous sublayer flow remains linear. It is also interesting that despite the 
differences in the physical processes leading to the generation of Tollmien-Schlichting 
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FIGURE 1. Basic layout. 

waves by external vorticity waves on the one hand and by wall vibrator, considered 
by, for example, Terent'ev (1981, 1984), on the other hand, the mathematical problems 
describing the processes may be reduced to one another. Therefore the results of 
Terent'ev's (1981, 1984) analysis may be directly used for our purposes. In addition 
to that it is also shown in $5 that an explicit general formula may be derived for 
the amplitude of Tollmien-Schlichting waves generated via the interaction of external 
turbulence perturbations, with stationary boundary-layer perturbations around the 
roughness. 

2. Formulation of the problem 
Consider the incompressible viscous fluid flow over a semi-infinite flat plate aligned 

with the mean velocity vector upstream of the flat plate (figure 1). We denote the 
free-stream velocity value by U,  and pressure by pa. Suppose that there is a small 
roughness element on the plate surface, a distance L downstream from the leading 
edge, and introduce Cartesian coordinates (Lx, Ly), where x is measured along the 
flat plate from its leading edge and y is the normal coordinate. Let (U,u, U,u) be 
the velocity components in this coordinate system, and pa + p U k p  be pressure. The 
density p of the fluid and the viscosity coefficient p are both assumed to be constant. 
With time defined as (L/U,)t the Navier-Stokes equations take the form 

au au au a p  1 ( a Z U  ;;) - + u- + u- = -- +-  
at ax a y  ax Re a x 2  

av a0 av a p  1 (a ia  ;;) 
- +u- +v- == -_ + - 
at ax a y  a y  Re ax2 
au av - + - = o ,  
ax ay  

- + - ,  
__ + __ 

where the Reynolds number 
PUWL Re = ___ 

P 
is taken to be large in the following analysis. 

We represent the solution for (2.1) in the free-stream by the asymptotic expansions 

(2.2) / 
u = 1 + €G,(t,Z,L) + €Z&(t,TC,jq + . . . , 
u = €V'(t,X,Y) + €2U2(i',X,j7) + . . . , 
p = €pl(t,TC,L) + €2j72(t , jZ,L) + . . . , 

t = Re-'I4t, x = Re-'l4T, y = Re-'I4y. (2.3) 

where the scaling Re-114 is used for both time and the spatial coordinates, namely 
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This satisfies the resonance condition for the external perturbation frequency to 
coincide with that of internal Tollmien-Schlichting waves near the lower branch of 
the boundary-layer stability curve. The amplitude of the perturbations E is assumed 
to be small compared with unity. 

Substitution of (2.2), (2.3) into (2.1), to leading order leads to the linearized Euler 
equations 

It follows from (2.4) that the vorticity, defined by 

- au, a%, 
ax a y ?  

(j j ,=--- 

is function of < = X - 2 and 

expressed as a superposition of periodic functions of 5 and L: 

only. 
Since the free-stream turbulence is taken to be uniform, the vorticity field may be 

being the amplitude of the corresponding harmonic and a, /? denote the (real) 
wavenumbers in the 3- and L-directions respectively, and where C.C. denotes the 
complex conjugate. 

It follows from (2.5), (2.6) and the continuity equation (2.4) that the velocity 
components in the free-stream flow take the form 

Substitution of (2.7) into (2.4) leads to the conclusion that there can be no pressure 
gradient in the free-stream to leading order, and so 

The quadratic terms in (2.2) are described by 

au2 ag2 au, a ~ ,  
~ + ~ + E l -  +v]--= 
at ax ax 87 
air2 air2 air, au, 

~ + ~ + z?, - + v,-= at ax ax a7 
azi2 air2 -+- 
ax a7 

0. 

The solution of (2.8) depends on the specific form of (2.6). If ‘convective gusts’ 
are considered, where the vorticity field is represented by just one harmonic, we may 
write 

a, = (jjl)ei(ar+BL) + C.C., 
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and then the pressure gradients are both zero in the second approximation also, i.e. 

On the other hand, if we take the combination of two symmetrical harmonics 
- w, = w:e’(at+Bv) + oOei(ar-By) + c/-, 

1 

where the amplitude wy is real, then the pressure gradient takes the form 

It will be shown in 43 that the vorticity field deformation near the surface leads to 
a non-zero pressure gradient d p 2 / a X  at the outer edge of the boundary layer, even if 
the free-stream perturbations take the form of ‘convective gusts’. In the vicinity of 
the wall roughness both longitudinal velocity components outside the boundary layer 
and the pressure gradient inside the boundary layer oscillate in time with frequency 
o = Re’14a, but it is necessary to keep in mind that the amplitude of the velocity 
oscillations outside the boundary layer is O ( E ) ,  while the pressure oscillations have 
an amplitude O(e2), which therefore cause only O(e2) velocity oscillations inside the 
boundary layer. 

In order that Tollmien-Schlichting waves be generated, these temporal oscillations 
must be accompanied by spatial perturbations in the boundary layer, with appropriate 
longitudinal extent. If the extent is taken to be O(Re-3/8), then the wavenumber 
coincides with that of Tollmien-Schlichting waves. Thus resonance conditions will be 
satisfied if the wall roughness has the form 

where generally the function F = O(1) for finite values of its argument. Analysis of 
the flow in the vicinity of the roughness is presented in 44. 

3. Flow behaviour upstream of the roughness 
Since the free-stream velocity field (2.7) does not satisfy the impermeability condi- 

tion on the flat-plate surface, a vortex boundary layer forms near the wall. It occupies 
a narrow strip along the flat plate, with thickness of the same order as the wavelength 
of the free-stream vorticity wave, namely y = O(Re-’14). Two physical processes 
must be taken into account in the analysis of this region. First, there is an almost 
immediate modification of the velocity field owing to the impermeability condition 
and, second, a very slow process of deformation of the vorticity field, associated with 
a slow movement of fluid particles with respect to the free-stream mean velocity. 

For these reasons, the solution in the vortex layer (region 1 in figure 2) may be 
expressed in the form of the following multiscale asymptotic expansions : 

(3.1) 

where fast variables t,Z,y are just the same as in the free-stream flow, namely (2.3), 

u = 1 +cU1(5,x,X,y)+€2Uz(t,X,~,L)+ ...) 
v = € i q t , X , X , Y )  + €2v2(t,x,x,y) + . . . , 
p = € . P , ( t , X , f i ; J )  + e2P2(t,X,X,y) + . . . , 
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1 

FIGURE 2. Layout of asymptotic regions; the characteristic thicknesses of the regions are 
1:  O(Re-1/4), 2 :  O(Re-’/’), 3: O(ReP5/*), 2‘: O(Re-‘/* [log Re]-’/’). 

while the slow variable x is defined by 

x = ~ R e ’ l ~ x .  

Substitution of (3.1) into the Navier-Stokes equations (2.1) leads to the linearized 
Euler equations 

- 0. (3.3) au, atTl aP, aP, aVl aP, anT, av, 
at  ax a % ’  at ax a p ’  ax ap 

+---=-- - +-- - __ 

Cross-differentiation of the first two equations shows that the vorticity 

aTl aUl 
ax a3 

ml=-- -  (3.4) 

is a function of x, { = x - t and p only. 

continuity equation in (3.3), we introduce the stream function y1 such that 
If 01 were known, the velocity field could be determined as follows. Based on the 

Substitution of (3.5) into (3.4) leads to the equation 

a2w1 a2v1 - + - = -01 ,  ax2 ay2 
which must be subject to the impermeability condition on the flat plate surface 

y l=O at p=O (3.7) 

The matching condition with the longitudinal velocity component in the free-stream 
flow (2.7) leads to 

In order to find the vorticity 0 1 ,  consider the second-order equations in the vortex 
layer, namely 

(3.9) 

an2 ai7, au, - aD, - au, aP2 aPl +-+ u1- + v1-= = -- ---=r 

ax 3 ax ax’ -+-- at ax ax 
aP, aV2 av, - aTl - av, aP2 
- + - + Y + u1- + v1-- =--- at ax ax ax a7 ay ’ 
au, au, a~~ ----+-- +-=O.  ax ax ap 
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The expansions (3.1) are assumed to be uniformly valid with respect to x. For this 
reason we seek the solution in which not only U1, V1, but also U2, V2 are functions 
of 5 = X - t, x and 7. Taking this restriction into account, we can easily obtain from 
the momentum equations in (3.3) that 

_ _  _ _  

= 0. 
ap, - a ~ ,  
ax ay 
~- - 

The first two terms in both the longitudinal and the lateral momentum equations 
in (3.9) cancel for the same reason, and cross-differentiation of the residual terms 
leads to the vorticity evolution equation 

(3.10) 

This must be solved subject to the following initial condition at the leading edge of 
the flat plate: 

(3.11) 01 = C w:ei(at+py) + C.C. 

where the vorticity evolves from the unperturbed free-stream state (2.6). 
The boundary value problem is then represented by a combination of (3.6)-(3.8) 

and (3.10)-(3.11). In order to describe the Tollmien-Schlichting wave generation 
process, we need to know the solution in the vortex layer near the roughness location 
x = 1. In accordance with (3.2), the slow variable x at this point is x = 

Therefore, depending on the ratio of the free-stream perturbation amplitude E and 
its first critical value E* = Re-'/4, the solution for small, finite or large values of x 
may be required. 

Suppose, first, that E is small compared with E * .  In that case the solution for 
(3.5)-(3.8), (3.10), (3.11) may be expressed in the form of Taylor expansions 

at X = 0, 
a.B 

(3.12) 
(3.13) 

Since equation (3.10) is nonlinear, the solution must be dependent on the nature of 
the superposition in (2.6). If a simple 'convective gust' flow is considered then 

qo = wyei(at+PY) + c .C., (3.14) 

and 

(3.15) 

(3.16) 

(3.17) 
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such that the pressure gradient appears to be 
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This tends to zero at the outer edge of the vortex layer, as 7 -+ cx), and takes the form 

+ C.C. 
aP2 - 2a2(a + ip)2(o:)2 ei2ar 

ax 
-- 

( p  + 3ia)(a2 + p2)2 (3.19) 

near the bottom of the vortex layer. 
It is now routine to extend the above series in x to higher order; however for finite 

values of x the solution of (3.5)-(3.8), (3.10) and (3.11) must be obtained numerically. 
Two numerical approaches were adopted. The first was a spectral scheme, based 

on a Fourier series representation in the [-direction, which automatically ‘built in’ 
the periodic nature of the flow. We write 

cc 

col(X, ji, [) = C &,,(JT, X)eJanc, (3.20) 

(3.21) 

and so (3.6) reduces simply to 

whilst (3.10) may then be written in the form 

(3.23) 

This particular numerical scheme then proceeded by the use of second-order central 
finite differencing in 7, (implicit) Crank-Nicolson second-order differencing in x, 
together with truncation of the series (3.20), (3.21) at n = _+N. The boundary 
conditions appropriate to this system are that all Qn are bounded as ji -+ co and 

ijjfl(7 = 0)  = 0 Vn. (3.24) 

Taking the convective gust problem (on which we focus most of our attention, 
although conceptually there is little difference in taking the more general class of 
free-stream disturbance), then we have that as ji + cx) 

&,, - 0  for n # +1, (3.25) 

but 
(3.26) 

Although this scheme did provide accurate solutions at small and moderate values 
of x, after some investigation it was found that at larger values of x, the truncation 
errors associated with this scheme became increasingly large, and substantially larger 
values of the parameter N were required in order to maintain accuracy which in turn 
demanded the use of smaller values of the step size LIZ; correspondingly, substantially 
longer computing times were then necessary. In an attempt to resolve this difficulty, 
the scheme was modified to a pseudo-spectral scheme, in which the solution in spectral 
( n )  space was fast-Fourier transformed into physical (5) space, in which the nonlinear 

0 
&l + q. 
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FIGURE 3.  Wall vorticity distributions (z = ol(L = 0)) for GL = 1,p = 0. 

(convolution) terms were evaluated, and then fast-Fourier transformed back into 
spectral ( n )  space. However this scheme was susceptible to aliasing errors, which were 
difficult to control. 

As an alternative to the above procedures, the solution was also carried out using 
a fully second-order finite-difference scheme. In order to improve accuracy, two 
coordinate mappings were implemented, one of the form 5 = f(0, the other of the 
form 7 = g(r ] ) .  The problem in terms of r]  and 5 may then be stated in the form 

(3.27) 

together with 

(3.28) 

with appropriate (periodic) boundary conditions in i. This technique then allowed 
'bunching' of grid points close to 7 = r]  = 0 and also close to some specified [(t) 
location, once a finite-difference approximation had been made. 

In the case of the spectral method, typically we took N = 120, with a transverse grid 
that extended to j = 10, with 301 grid points, and a 'time' step of AX = 0.005. For the 
fully finite-difference scheme, we generally took 641 points in 5, 321 points in r ] ,  with 
a grid that extended out to J = 20 in the physical coordinate, with AX = 0.005. We 
carried out detailed computations for two sets of data. The first corresponds to CI = 1, 
p = 0. Results for the wall vorticity (shear) distribution with 4 at selected values of x 
are shown in figure 3. Note that for these data, there exists symmetry/antisymmetry 
about i: = +n/2, a feature of the solution that our finite-difference scheme was able 

aW f ' ( i ) s ' ( r ) z  + W l t p l i  - W l i W q  = 0, 
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142 

FIGURE 4. Vorticity contours for t~ = 1,b = 0:  (a )  x = 0.5, ( b )  x = 1.0, (c) x = 1.25. 

353 

FIGURE 5. Variation of a o , / a y ( r  = ; T C , ~  = 0) and an,/d((c = ; T C , ~  = 0) with x for a =  1,P = 0. 
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to exploit, by halving the computational domain. Figure 3 reveals very clearly the 
development of an increasing steepening of the wall-vorticity distribution, strongly 
pointing to the development of a shock-like distribution forming at some finite value 
of X = x,, centred around the point 5 = <, = n/2.  Indeed, this point is significant, 
corresponding exactly to the point where the vorticity is zero (for all x), which 
significantly in turn corresponds to effectively a stagnation point lying on the wall 
surface. Indeed, the maximum amplitude of the vorticity is always bounded (as it 
must be) whilst the vorticity at < = ts, 7 = 0 must always remain zero on account of 
the antisymmetry about this point, which in turn leads to the fact that [, remains a 
stagnation point. 

Figure (4a-c) shows contours of constant vorticity throughout the flow-field, at 
selected values of x. These reveal a ‘pinching’ of the vorticity contours close to 
< = n/2, as the critical value of is approached. Figure 5 shows the development of 
aw,/a<([  = 71/2,7 = 0) and ag,/a[(5 = 71/2,7 = 0) with x. These results reinforce 
the concept of the development of a short lengthscale around < = n/2;  it does appear 
that the singularity in the vorticity distribution is considerably stronger than in the 
streamwise velocity distribution. This point is important in developing an analytic 
description of the singular behaviour of the flow. 

The second case considered was a = p = 1. Results for the wall vorticity distribution 
are shown in figure 6. In this case the symmetry arguments are no longer appropriate. 
From these results, it is again clear that a shock-like structure in the wall vorticity 
is developing, this time close to < = 5,  = n/4, at which point again, the vorticity 
remains constant for a11 x, although in this case the vorticity is non-zero there; 
however this point does correspond to a stagnation point of the flow field. Note that 
in the general case stagnation points occur at [ = l /a arctan(a/fi). This arises because 
on p = 0, Vl = -ylr = 0 for all X, whilst V,(g = 0,X = 0)  = wly(y = 0,X = 0) = 0 
provided 5 = l/aarctan(a/p) (see (3.15)). However by (3.10) we then see that 
aol/aX(p = O , X  = 0) = 0 at this point, and so o1 remains initially unchanged 
at this point. However the additional constraint of periodicity in < leads to the 
conclusion that d o l / a X  = 0, = Vl = 0 at this point for all X. This conclusion is 
confirmed at the second order in X, as shown by (3.16); consequently all effective 
stagnation points remain effective stagnation points, and the value of the vorticity, 
ol, at these points remains constant. Figure 7a-c shows the lines of constant vorticity 
throughout the flow field, and again the pinching behaviour close to < = ts is seen to 
develop as increases. The development of w l r ( t  = &,jj = 0) and qr(< = cs,7 = 0) 
are shown in figure 8. 

The nature of this singularity is of great interest. It is very clear from our numerical 
results that (i) a small streamwise scale emerges close to the singular point <, when x approaches the critical value x,; (ii) the vorticity o1 remains bounded; (iii) the 
strength of the singularity of the derivative of the wall vorticity is substantially greater 
than that of the streamwise velocity; and (iv) the singularity occurs at the stagnation 
point located on the wall. Guided by the above, one plausible structure is as follows. 
We write 

(3.29) 

where z = x, - 13 and y is an index which is to be determined. It would appear that 
the only sensible rational solution development takes the form 

y1 = ~ ~ ~ - ~ l b  C(j)dj + z 2 Y & ( l , j )  + . . . , 
9 

(3.30) 
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5 
FIGURE 6. Wall vorticity distributions for LY = 1,p = 1. 

where 9 = y/zY-', and 

01 = 010 + ia, + @lEi + . . . (3.31) 

(where 010 = 20:  COS(CY~,) is a constant) which leads to the system 
9 

yt (69 +@ l t g g )  + ( y - 1)9( G,, + @l,gg)  + G( G; + @ l g g t )  - / Gdj( ?6~+ + Q1tt,) = 0. (3.32) 

Implementation of the 9 = 0 boundary condition leads to the result that Glp=0 = --y, 
whilst as 151 + 00, 

The determination of y must be obtained from the solution to the full system (3.27)- 
(3.28); our numerical solution, although unable to accurately determine the numerical 
value of y because of numerical difficulties, does indicate values in excess of '4' in 
the case of CI = 1, and /? = 0. Indeed, the relative largeness of this value is to a 
large extent responsible for the difficulty in its accurate determination, because of 
the corresponding large solution gradients, which in turn lead to a large numerical 
dissipation, which obviously becomes compounded as the location of the breakdown 
is approached. Indeed there are a number of similarities here with the difficulties 
associated with the numerical solution of Burgers' equation, which has some obvious 
similarities in form with our system. 

We now consider the effects of a wall roughness element located upstream of the 
singular point, i.e. x = at the roughness location is smaller than X, then 

0 

@,gg -+ -&ip (3.33) 
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FIGURE 7 (a, b).  For caption see facing page. 
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FIGURE 7. Vorticity contours for a = l ,p  = 1: ( a )  x = 0.5, (b )  x = 1.0, (c )  x = 1.5. 
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the analysis of the Tollmien-Schlichting waves generation process is appropriate. 
This requires a knowledge of the velocity and the pressure fields near the roughness 
element. In the vortex layer (region 1 in figure 2)  these take the form 

(3.34) 
u = 1 + € ~ , ( t ,  X , Y ) + € 2 ~ 2 ( 5 , X 7 Y ) + . . . ,  
v =€v, (5 ,X7L)+€2v, (5 ,~ ,y)+  ..., 
p=c2F*(5,X75j)+ ... 

_ _ _ _ _  
All the terms U1, U2 ,  V1, V2,P2, etc. in the asymptotic expansions (3.34) are periodic 
functions of 5 .  For example, the pressure near the bottom of the vortex layer may be 
expressed in Fourier series form 

n=-ca 

Similarly, we can write 

(3.36) 

where 

The stationary boundary-layer flow upstream of the roughness may be described by 
the Blasius solution 

- - 
P-, = c.c.P,, U1(-n) = C.C.Uln, 

u = ub(x, Y )  + . . . , v = Re-1/2Vb(X, Y )  +. . . , 
where Y = Re1I2y and 

Ub = f’(yj), v, = -1x-1/2 I /2  Y 
2 (f-vf’), r =Re- x1/2’ 

with the function f (q )  representing the solution to the Blasius equation 

f’” + iff” = 0, f(0) = f’(0) = 0, f(m) = 1. 

(3.37) 

It follows from the matching condition with the solution (3.34)-(3.36) in the vortex 
layer that the non-stationary flow in the boundary layer takes the following asymptotic 
form : 

(3.38) 1 u = ub(x, y ) + FUI ( 5  7 x, X, y ) + . . . , 
v = Re-1/2Vb(x, Y )  + ~ R e - ’ / ~ v ~ ( t ,  x , x ,  Y )  + . . . , 

p = € 2 P 2 ( t , x 7 Y )  +.... 
Substitution of (3.38) into the Navier-Stokes equations (2.1) leads to 

or by eliminating dU1/a( 

(3.39) 

which is equivalent to 
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This equation may be integrated, and with the impermeability condition at the wall 
namely Vl = 0 at Y = 0, leads to the conclusion that Vl is identically zero in the 
boundary layer. Further, it easily follows from (3.39) that d U l / a g  must also be zero 
and so no oscillatory term of O ( E )  may exist in the asymptotic expansion (3.38) for 
the longitudinal velocity component u in the boundary layer. 

In order to smooth out this jump in the O ( E )  longitudinal velocity oscillations in the 
outer vortex flow, which are not present inside the boundary layer, an intermediate 
shear layer (region 2’ in figure 2) must be introduced near the outer edge of the 
boundary layer. If the O(e2)  terms are included in the asymptotic expansions (3.38) 
for u and u,  then the boundary layer by itself divides into two parts, region 2 and 
region 3 (see figure 2). Region 2 is the bulk of the boundary layer where the flow 
appears to be effectively inviscid with respect to high-frequency oscillations. Region 
3 is a thin viscous Stokes layer which serves to satisfy the no-slip condition on the 
surface. 

Consider first the intermediate viscous layer 2’. Here a new normal variable 9 is 
introduced as follows (see Guliaev et al. 1989) 

y = Re-112 [Yo(x, Re) + 6(x,  R e ) j ] ,  (3.40) 

where the ‘centreline’ Yo and intermediate layer thickness 6 are to be determined. 
As the intermediate layer is located near the outer edge of the boundary layer and 
viscous forces must be significant, it is reasonable to expect that YO -+ 00 and 6 + 0 
as Re -+ co. 

The velocity components in region 2’ may be written in the form 

(3.41) 

where the leading-order terms ub and Vb again represent the Blasius stationary 
solution (3.37). It is known that near the outer edge of the boundary layer 

(3.42) 

with A = 0.46 and ql = 1.72, and q is defined below. 
In order to determine Yo and 6 in (3.40), a balance of longitudinal and transverse 

inertial terms with the viscous term in the longitudinal momentum equation (2.1) has 
to be considered, i.e. 

(3.43) 

Taking into account the asymptotic behaviour of ub as indicated in (3.42), and 
taking 

Yo + 69 
q = x 1 / 2 ,  

it can be easily shown that (see Guliaev et al. 1989) 

2 
Yo(x, Re) = qo(Re)x’l2, 6(Re) = ~ 

ro(Re)’ 
with qo satisfying the transcendental equation 

3 7;/4 = 4ARe1/4, roe 
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and so 

qg = log Re - log log Re + . . . as Re -+ 00. 

It should be noted here that the nonlinear terms in the longitudinal momentum 
equation are u ( ~ * R e ' / ~ ) ,  and so comparing linear and nonlinear terms, it can be 
shown the condition (3.43) that controls the location and thickness of the intermediate 
layer is valid provided 

If E 3 O(qgRe~'/~), the resultant problem for the intermediate layer is nonlinear 
in general and so requires a more complicated analysis. Since our purpose is to 
verify the principal possibility for Tollmien-Schlichting waves to be generated by 
free-stream turbulence, in the subsequent analysis we have assumed that in sublayer 
2' the perturbation amplitude is small enough to satisfy (3.44). Hence, the problem 
for region 2' may be reduced to 
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E 4 ~ i R e - ' / ~ ,  (3.44) 

Since equations (3.45) are linear, it is convenient to seek solutions in the form of 
Fourier series 

(3.46) 
n=--00 n=-m 

Each Fourier mode may then be treated independently, and so from (3.45), (3.46) 

(3.47) 

Without loss of generality we may assume a > 0. The boundary conditions for 
(3.47) arise from matching with the solution in the bulk of the boundary layer (region 
2 in figure 2) 

?ln -+ o as j -+-a, (3.48) 
and also matching with the solution represented by (3.34), (3.36) in the vortex layer 
(region 1) 

(3.49) 

Introducing the new independent variable 

= 2(ianx)e-ji/(2x"*) 

the solution for (3.47)-(3.49) may be expressed in terms of Hankel functions Hi1) and 
Hf ' : 

?ln(z) = 2nnax1/*uln(X)z2 ~-~H!)(z)dz for n > 0, (3.50) 

P I n ( Z )  = 0 for n = 0, (3.51) 

(3.52) ?ln(z) = - 2 n n a ~ ' / ~ ~ ~ , ( ~ ) z ~  ~ - ~ H f ) ( z ) d z  for n < 0. 6" 
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FIGURE 9. Triple-deck structure. 

Using the asymptotic behaviour of Hankel functions as z + co along arg(z) = 7c/4 for 
n > 0 (or along arg(z) = -n/4 for n < 0) it can be shown that unsteady perturbations 
of O(E)  do not penetrate into the main part of the boundary layer, but rather exhibit a 
rapid exponential decay within the intermediate layer, as 9 -+ -a. Similar behaviour 
of pulsatory shear layers was shown to exist by Smith, Doorly & Rothmayer (1990) 
under quite different circumstances. 

To formulate the boundary value problem for the triple-deck region in the vicinity 
of the roughness, we need to know the solution in the Stokes layer. This may be 
expressed in the form of the asymptotic expansions 

(3.53) 

(3.54) 

&(x, Y*)  = A(x)Y., (3.55) 

1 u = Re-’/800(x, Y.) + t-’02(<,x, Y.) + . . . , 
u = R e ~ ~ / ~ P o ( x ,  Y.) + E ~ R ~ - ~ / * ~ ~ ( < , X ,  Y.) + .. ., 
p = € 2  F,(<,X,O)+ ..., 

with the transverse variable 
Y. = Re5l8y. 

Substitution of (3.53) into the Navier-Stokes equations (2.1) shows that 

where A(x) is the skin friction distribution along the flat plate in Blasius flow. 

shown to be 
The oscillatory term 02 in the longitudinal velocity component (3.53) may be 

(3.56) 

where the P n ( x )  are defined in (3.35). 

4. Flow around the roughness 
As mentioned in $1, the flow in the vicinity of the roughness has a triple-deck 

structure. This consists of a viscous near-wall layer (region 4 in figure 9), wherein y = 
O ( R ~ C ~ / ~ ) ,  the bulk of the boundary layer (region 5) with thickness y = O(Re-’/’) and 
the external region 6, where y = O(Rec3/’). The generation of Tollmien-Schlichting 
waves may result from the nonlinear interactions of the stationary flow perturbations 
around the roughness with the oscillating flow arising from the vorticity wave outside 
the boundary layer (in region 1 in figure 2) and boundary-layer oscillations, especially 
in the Stokes layer (region 3), upstream of the roughness. Under normal circumstances, 
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nonlinear effects are important only in the near-wall region 4, but the vorticity wave 
provokes very small oscillations in the Stokes layer compared with the oscillations 
outside the boundary layer. Consequently, as far as the Tollmien-Schlichting wave 
generation process is concerned, the role of nonlinear processes in region 6 may be 
more important than their role in the viscous sublayer 4. 

The criterion may be ascertained in the following way. The pressure gradient in the 
vorticity wave leading to the flow oscillations in the Stokes layer may be estimated as 

On the other hand, an oscillating pressure gradient is also generated locally in the 
upper deck (region 6) owing to superposition of the stationary perturbations which 
are such that 

whilst the perturbations in the vorticity wave (in accordance with the solution repre- 
sented by (3.34)) are such that 

The pressure perturbations may be estimated from the product of (4.2) and (4.3), and 

= 0 ( ~ ~ - 1 / 4 ) ,  (4.2) 

u = O(€).  (4.3) 

so 
= 0 ( € ~ ~ - 1 / 4 ) .  

Since the characteristic longitudinal scale of the stationary velocity perturbations (4.2) 
is Ax - Re-3/8, the pressure gradient 

Comparison of (4.1) and (4.4) shows that there is a critical value of the amplitude 
** 

E = &-'Ig .  

If the amplitude E of the vorticity oscillations in the free stream is small compared 
with E** ,  then the contribution of the upper deck in the Tollmien-Schlichting wave 
generation process is more important than the contribution of the viscous sublayer. 
If E is greater than F** ,  then nonlinear effects in the viscous sublayer are dominant. 

Since the wall roughness is taken to be upstream of the singularity in the vortex 
layer flow, i.e. x = < xs, in what follows the amplitude of free-stream 
perturbations F is taken to be O(Re-'I4) or less. In this case the condition (3.44) is 
satisfied automatically and f appears to be much smaller than E". Consequently the 
nonlinear interaction of the triple-deck flow with the near-wall Stokes layer (region 3 
in figure 2) takes no part in the Tollmien-Schlichting wave generation process. 

Consider the flow in the viscous near-wall layer (region 4), where 

y = &-5/8Y,, t = &-'I4- t, x = 1 + (4.5) 
The velocity components and the pressure have expansions 

(4.6) i u = Re-1/8 U; + U& + Re-3/8 U& + €Re-'I8 U ;  + . . . , 
u = Re-3/s V; + V;, + Red5I8 V& + t-Re-3/8 V; + . . . , 
p = Re-1/4P; + Rec3/*P;, + Re-'12P& + eRe-'I4P; + . . . . 

Here the first three terms represent stationary flow over the roughness, and therefore 
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U&, V& and Pii with i = 0,1,2 depend on x., Y. only. The fourth terms U;,  V; and 
P; describe non-stationary perturbations and depend on t, x,, Y,. In the subsequent 
analysis only the leading-order stationary terms U;, V , ,  P i  and the first unsteady 
perturbations U;,  V;, P; are of significance as their interaction can produce Tollmien- 
Schlichting waves. Upon substituting (4.5), (4.6) into the Navier-Stokes equations 
(2.1) the following equations are obtained: 

and 

ap; a2u; + 2' ax. ar. 
-~ - - 

au; av; 
ax. ay, 
--+- = 0. 

(4.7) 

These equations must be solved with the no-slip and impermeability boundary con- 
ditions on the rigid-body surface (2.9) 

(4.9) u* - V' - - - U ;  = V; = 0 at Y, = F(x,), 

and matching with the solution (3.53)-(3.56) in the Stokes layer upstream of the 
roughness (region 3 in figure 2) leads to 

U; +AY*, U ;  - 0  as x. +-a. (4.10) 

It is straightforward to show that near the outer edge of region 4, the solutions of 
(4.7), (4.8) may be expressed in the form 

dAi 
dx. 

U i  = AY* + A~(x . )  + . . . , v; = -Y*- +..., 

aA; 
ax, 

U;  = A;(t,x.) + . . ., V; = -Y - + . . . , (4.11) 

as Y,  -+ 00. 

Functions A; and A; are displacement functions, and represent the displacement 
effect of the boundary layer on the external flow. These functions, as well as the 
pressure gradients aPi/ax. and aP;/dx. in (4.7), (4.8) are unknown a priori . 

In order to match with the viscous sublayer solution (4.6), (4.11) the solution in 
the bulk of the boundary layer (region 5 in figure 9) where y = Re-'/'Y must be 
expanded in the form 

(4.12) 1 u = u ~ ( Y )  + U0(x,, Y )  + . . . + cRe-'/8 ~ ' ( j ,  x., Y )  + . . . , 
Y = R ~ - ' / ~ I / O ( X . ,  Y )  + ... + c ~ e - ' / ~ ~ ' ( t , x , ,  Y )  + ..., 
p = R ~ - ' / ~ P O ( X . ,  Y )  +. . . + c ~ e - ' / ~ ~ ' ( t , x . ,  Y )  +. . . . 

In the expressions above, Ub(Y)  is the Blasius velocity profile at x = 1 and only the 
leading-order stationary terms and the leading-order unsteady terms are indicated, all 
others being omitted for brevity. 
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in the viscous near-wall region 4, it is easily verified that 
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Upon substitution of (4.12) into (2.1) and matching with the solution (4.6), (4.11) 

and 
1 aA; 
R ax. 

b(Y), P' = P;(t,X.), (4.14) 
1 

U' = IA;(t,x.)Ui(Y), V' = ----U 

where P i  and P; are the corresponding terms from the pressure expansion (4.6) in 
region 4 (see figure 9). These are independent of the normal variable Y, in this region, 
while Po and P' do not vary transversely across region 5. 

Consider now the external region 6 (figure 9), where y = Re-3/8y,. It follows from 
matching with solution represented by (3.34) for the turbulence deformation layer, 
that velocity components and pressure in region 6 must be sought in the form 

u = 1 + Re~'/~u;(x. ,y,)  + E ~ I  [50(t),xo,O] + . . . + ~Re-'/~u;(t,x.,y.) + . . . , 
u = Re-'/4uG(x,,y.) + . . . + eRe-'/4v;(?, x,,y.) + . . . , 
p = &-'I4 p;(x,, y.) +. . . + ReC3/*p;(?,x.,y,) + . . . . 

The leading-order term in the longitudinal velocity component expansion (4.1 5) 
corresponds to the uniform undisturbed flow outside the boundary layer, the Re-'14u; 
term represents stationary perturbations produced by the roughness, while the C ~ I  

term represents flow oscillations in the vorticity wave just at the roughness location. 
This is a function of time only, with to@) being defined as 

(4.15) 1 
= To - t, 

and constants X O , ~ O  are then X- and X-coordinates of the roughness 'center'. Sta- 
tionary flow over the roughness is described by u;, ub, p i ,  while only the leading-order 
stationary terms have been included. The terms u;,vl ,pl  appear in (4.15) as a result of 
nonlinear interactions between stationary perturbations and oscillatory fluctuations 
of the flow, and so their order of magnitude c R ~ - ' / ~  is simply the product of the 
order of magnitude of the stationary perturbations (Re-'/4) and the amplitude of the 
turbulent oscillations ( E ) .  

Substitution of (4.15) into (2.1) gives 

(4.16) 

The boundary conditions for (4.16) are the usual conditions of disturbance attenuation 
far from the roughness: 

(ui ,  v& p i )  -+ o as xt + y? -+ co, (4.17) 

and the matching condition with the solution (4.13) in the bulk of the boundary layer 
leads to 

1dA; 
R dx. 

VO = at y. = 0. 

The oscillatory terms satisfy 

(4.18) 
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The condition of attenuation is similar to (4.17), namely 

(u;,v;,p;) + o as x? + y,' + co. (4.20) 

Equation (4.19) also requires a boundary condition on y. = 0, similar to (4.18). 
The straightforward procedure to formulate the condition consists of matching of the 
expansion (4.15) with the solution in region 5' (see figure 9), which represents the 
continuation of the intermediate layer 2' (figure 2) into the triple-deck region. The 
solution in region 5' in turn should be matched with the solution (4.12)-(4.14) in the 
bulk of the boundary layer (region 5 in figure 9). Meanwhile it is easily seen that 
there is no need to follow this lengthy procedure. One can simply take into account 
that the displacement thickness of the boundary layer in the triple-deck region is 
influenced only by the viscous near-wall sublayer 4, where the fluid velocity is small 
and the flow reveals high sensitivity to the pressure variation along streamlines. In 
the bulk of the boundary layer the fluid velocity is an order of magnitude greater 
than in the sublayer and so, in spite of its relatively large thickness, the bulk of the 
boundary layer (region 5 )  does not contribute to the displacement thickness of the 
boundary layer as a whole. In region 5' the velocity is of the same order of magnitude 
as that in region 5, but the thickness is smaller. For this reason region 5' will not 
produce any effect on the displacement thickness. This implies that the slope of the 
streamlines v/u near the bottom of region 6 has to coincide with the slope v/u of the 
streamlines at the outer edge of region 5 (see figure 9). Using expansions (4.15) for 
region 0 and (4.12)-(4.14) for region 5, the matching procedure results in 

(4.21) 

The boundary-value problem (4.16)-(4.18) for the external inviscid region 6 con- 
sidered together with (4.7), (4.9)-(4.11) for viscous sublayer 4, constitutes the leading- 
order interaction problem describing the stationary flow over the roughness, while 
(4.19)-(4.21) coupled with (4.8)-(4.11) represent the interaction problem for oscillatory 
perturbations around the roughness. 

5. Tollmien-Schlichting wave generation 
If the scaled height of the roughness, i.e. F(x.) in (2.9), is 0(1), the leading-order 

stationary perturbations are governed by (4.7) with (4.9) and (4.10). Such nonlinear 
and complicated flow fields, which can involve separation phenomena, require a fully 
numerical investigation. Although the problem of receptivity in the presence of the 
backflow is interesting, it is beyond the objectives of the present investigation. On 
the other hand, if the characteristic height of the roughness may be taken as a small 
parameter, subsequent linearization leads to an analytic solution. We therefore write 
the roughness geometry as 

and allow h + 0. 

equations (4.7), (4.9)-(4.11) in the near-wall region 4 (figure 9) may be written as 

F(x*)  = hF'(x.), (5.1) 

In accordance with the representation (5.1), the solution for leading-order stationary 

(5.2) 

U{ = AY* + hA'/4Uo(~, Y )  + ..., V i  = hA3/4V0(~, Y )  + ..., 
A; = hA'/4Ao(~) +. . . , Po* = hA'/*PO(x) +. . . , 

x. = L-5/4x1 Y* = A-3/4Y, F' = 2 3 ' 4 f ( X ) .  
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Here asymptotic expansions valid for small h have been combined with an affine 
transformation to exclude the constant R from the equations for both the viscous 
near-wall region 4 and the external inviscid region 6 (see figure 9). The corresponding 
expressions for region 6 are 

p i  = hl”2po(x, y )  + . . . , yl = l-5i4y. 

Substitution of (5.2) into (4.7), (4.9)-(4.11) results in 
(5.3) 

UO = -f(x), VO = O  at Y =0, (5.4) 

U O - 0  as x+-co; Uo=Ao(x)+ ... as Y-+co.  

Equations (5.4) do not form a closed boundary-value problem. 
augmented with 

They must be 

Po -+ o as x2 + Y 2  + a, } (5.5) 

which may be obtained by substituting (5.3) into (4.16)-(4.18) and subsequent elimi- 
nation of uo and uo from the equations of motion. 

If the displacement function Ao(x) were known, then equations (5 .5)  could be used 
to find the pressure po(x, y )  everywhere in region 6 and, particularly, at the outer edge 
of the boundary layer. Since the pressure does not change across the boundary layer, 
in region 4 

P O ( X )  = P O ( X , O ) .  (5.6) 
Similarly, to determine the behaviour of non-stationary perturbations in the inter- 

action region, it is necessary to solve the following system for region 4: 

(5.7) 

--+Y-+V1=----’+- au, au, a p  awl --+-=o, au, av, 
at ax a x  aY2’ ax  a y  

U1 = V1 = 0 at Y = 0, 

UI -+0  as x - + - c o ;  U1 -+ Al(t ,x) as Y -++GO, I 
combined with 

p 1  -+ o as x2+V2 --+ 00, } 

via the pressure equality 
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where 
7 = A - 3 4  

It is seen that the stationary problem (5.4)-(5.6) is similar to the problem considered 
by Stewartson (1970) and may be solved by means of Fourier transforms. Following 
Stewartson's argument it can be easily shown that the solution of (5.4)-(5.6) gives 

where Ai'(k)  is the Fourier image of the displacement function 

and f * * ( k )  is similarly the Fourier image of the wall roughness, and the appropriate 
root of (&)'I3 is chosen with the branch cut taken along the positive imaginary axis, 
as standard. 

Turning to the unsteady problem (5.7)-(5.9) (remembering that ul in (5.8) is a 
periodic function of time), and using the substitution < 0 ( t )  = x,-A-3/2t in (3.36) gives 

(5.10) 

Since the problem (5.7)-(5.9) is linear, each mode becomes decoupled, and we may 
therefore treat each value of n in isolation, or more specifically consider 

m 
~ ~ ) ~ i n c t x o  e -inai-'/*r w m , X o , 0 )  = c u ( 

n=-m, 

Dl(<o(t), ~ 0 ,  0 )  = U1,(Xg)einaxo e -inai'-3'2r + Vl~-,,,(xo)e e > (5.11) -inax0 inai.-'/'t 

where V1(-n) is the complex conjugate of uln, and then (5.11) may be rewritten in the 
form 

ul ([O(t), xo, 0) = Re (Bei'"') , (5.12) 
where Re denotes the real part of the expression in the braces, amplitude B is defined 
as 

B = 2V1(-n)(Xo)e-inaXo, 
and the frequency of oscillation is 

= n a ~ - 3 / 2  

With the function gl(<o(t) ,Xo, 0) defined by (5.12) and a known leading-order sta- 
tionary displacement thickness distribution Ao(x), the unsteady interaction problem 
(5.7)-(5.9) takes the form which may be shown (with the help of the Prandtl transpo- 
sition theorem) to be equivalent to the problem considered by Terent'ev (1981,1984) 
in his analysis of Tollmien-Schlichting wave generation by a vibrating wall. The 
method of Fourier transformations is again applicable. 

The unsteady pressure, which arises as a result of the interaction between pertur- 
bations of the form (5.12) in the vortex boundary layer and the displacement due to 
the roughness, may be found from (5.8) to be 

P;' = /kl (AY'(k) + 2 B A 3 ) ) .  (5.13) 

After Fourier transformation, equations (5.7) become 
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a v;* 
ay 

ikU;* + __ = 0, 

(5.14) 

The analysis is routine (see for example Terent’ev 1981, 1984; Goldstein 1985), and 
may be completed using Airy functions, leading to the result that 

(ik)1/31kl ImAi(z)dz 
2 B A; (k  ), J 20 A;*(k )  = 

Q(zo, k) 
(5.15) 

where 
00 

Q(zo,k) = Ai’(zo) - (ik)1/3ikl/ Ai(z)dz, (5.16) 

and zo = ~ / k ( i k ) ’ / ~ .  Knowing Ai*(k)  and A;*(k)  it is easy to obtain other flow 
quantities, for example we may write 

P;*(k )  = P;;(k) + P;;(k), (5.17) 

P;;(k) = 2B/k/A;(k) ,  P;;(k) = Lorn 2 B A r ( k ) .  (5.18) 

In principle, all flow quantities may be calculated by means of inverse Fourier 

20 

where 

i113k1/3 Ai(z)dz 

Q(zo,k) 

transformation. In particular, the pressure takes the form 

P;;(k)eik”dk + lI P;;(k)e”dk]) . (5.19) 

Following Terent’ev (1981), we subdivide the contour of integration in (5.19) into 
two parts, namely the negative real semi-axis CI and the positive real semi-axis CZ. 
Using Cauchy’s theorem, we replace the integral along C1 with the integrals along 
Cg and Ci as shown in figure 10. Correspondingly, the integration along C2 may be 
replaced with the integration along C; and Ci. Suppose further that the function 
f ( x ) ,  representing the shape of the wall roughness has a Fourier image f”(k) which 
may be analytically continued from the negative real semi-axis into the region inside 
the first closed contour and from the positive real semi-axis into the region inside 
the second contour. In that case the only singularities we have to take into account 
having changed the integration are the poles of P;; located at points where 

Q(zo, kf = 0. ( 5.20) 
Equation (5.20) represents a dispersion relation connecting wavenumbers and fre- 
quencies of the ‘eigen’ oscillations of the subsonic boundary layer in the vicinity of 
the lower branch of the neutral-stability curve (Lin 1946) at large Reynolds number. 
The properties of relation (5.20) are well-known and may be found, for example, in 
Zhuk & Ryzhov (1980), Terent’ev (1981), and Duck (1990). It is known that the 
dispersion relation (5.20) has an infinite set of roots kj(w), all of which except the first, 
k l ( o ) ,  being located above the real axis for all w, and it is k l ( o )  that is responsible 
for the generation of Tollmien-Schlichting waves. If o is smaller than the ‘neutral 
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FIGURE 10. Integration contours 

stability' value o. NN 2.298, then kl(co) is located above the real axis (see figure 10). 
But as o grows the first root kl(w) moves toward the lower half-plane, crossing the 
real axis at kl = -1.0005 where o = o.. 

It is clear from consideration of the above that the integration along the negative 
real axis in 11 may be replaced by an integration along the contour C;  which 
always contains the 'unstable' root kl(co) (but none of the other, stable roots). The 
contribution from this pole is 

and 

6. Concluding remarks 
The analysis in the present paper reveals that the generation of Tollmien-Schlichting 

waves by free-stream turbulence differs considerably from their generation by sound 
(see Ruban 1984 and Goldstein 1985). Acoustic waves are known to exist due to the 
periodic compression and expansion of the medium, and so the pressure oscillations 
are an intrinsic feature of a flow involving acoustic perturbations. These easily 
penetrate into the boundary layer causing the longitudinal velocity component to 
oscillate in the Stokes layer near the flat-plate surface. Nonlinear interaction of 
the Stokes layer oscillations with stationary flow perturbations provoked by wall 
roughness in the viscous sublayer of the triple-deck structure leads to Tollmien- 
Schlichting wave generation. 

Vorticity waves do not produce pressure oscillations (at least, to the leading order 
of magnitude), and so do not cause perturbations inside the boundary layer. Velocity 
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oscillations at its outer edge cannot penetrate into the bulk of the boundary layer. 
These decay rapidly in the intermediate shear layer between the boundary layer and 
external inviscid flow. This shear layer occupies a strip of characteristic thickness 
O[(Rel~gRe)- ’ /~]  at a distance O[Re-1/2(logRe)1/2] from the wall. As a result the 
viscous sublayer (the lower deck of the triple-deck structure) on the surface of the wall 
roughness is not affected by the vorticity waves. On the other hand, the roughness 
produces the flow perturbations not only inside the boundary layer, but also outside 
the boundary layer, in the upper deck of the triple-deck structure. These stationary 
perturbations interact with the velocity oscillations in the vorticity waves leading to 
Tollmien-Schlichting wave generation. 

Another interesting point is the existence of the ‘turbulence deformation layer’, 
where the nonlinear process of the vorticity field modification near the flat-plate 
surface takes place. Ultimately, this leads to a shock/discontinuity type singularity in 
the flow some distance downstream of the plate leading edge. There has been much 
interesting work carried out on the occurrence/non-occurrence of singularities of the 
Euler equations (see for example Tanveer & Speziale 1992), although the location of 
the (effective) stagnation point on the flow boundary does have a profound effect on 
the flow. This singularity may be interpreted as the formation of a strong vortex, and 
it is likely that its influence on the flow in the boundary layer may cause an ‘abrupt’ 
laminar-turbulent transition. Since the slow variable x in equation (3.10) is related to 
the amplitude c of the free-stream perturbations by equation (3.2), the ‘soft’ transition 
via generation of Tollmien-Schlichting waves must be expected for small E ,  while the 
‘abrupt’ transition is more likely to occur when E is relatively high. Another point 
regarding this region is that there is some possibiIity that it may be linked in some 
way with the eigensolutions found by Brown & Stewartson (1973a,b), pertinent to 
eigensolutions concentrated in the outer region of the boundary layer. This will be 
the subject .of further investigation. 

The work of A.I.R. was supported by United Technologies Research Center and by 
EPSRC. The work of C.N.Z. was supported by United Technologies Research Center. 
A number of computations were performed with EPSRC-funded equipment. 

REFERENCES 

BODONYI, R. J., WELCH, W. J. C., DUCK, P. W. & TADJFAR, M. 1989 A numerical study of the 
interaction between unsteady free-stream disturbances and localized variations in surface 
geometry. J. Fluid Mech. 209, 285. 

BROWN, S. N. & STEWARTSON, K. 1973a On the propagation of disturbances in a laminar boundary 
layer I. Proc. Camb. Phil. SOC. 73,493. 

BROWN, S.  N. & STEWARTSON, K. 1973b On the propagation of disturbances in a laminar boundary 
layer 11. Proc. Carnb. Phil. SOC. 73, 503. 

DRYDEN, H. L. 1956 Recent investigations of the problem of transition. 2. Flugwiss. 4, 89. 
DUCK, P. W. 1985 Laminar flow over unsteady humps: the formation of waves. J .  Fluid Mech. 160, 

DUCK, P. W. 1988 The effect of small surface perturbations on the pulsatile boundary layer on a 

DUCK, P. W. 1990 Triple-deck flow over unsteady surface disturbances: the three-dimensional 

FEDOROV, A. V. 1982 Generation of instability waves in a boundary-layer flow of compressible gas 

GOLDSTEIN, M. E. 1985 Scattering of acoustic waves into Tollmien-Schlichting waves by small 

465. 

semi-infinite fiat plate. J. Fluid Mech. 197, 259. 

development of Tollmien-Schlichting waves. Computers Fluids 18, 1. 

exposed to an acoustic field. Numer. Meth. Continuum Mech. (Novosibirsk) 13, 106. 

streamwise variation in surface geometry. J. Fluid Mech. 154, 509. 



The generation of Tollmien-Schlichting waves 371 

GOLDSTEIN, M. E. 1983 The evolution of Tollmien-Schlichting waves near a leading edge. J .  Fluid 
Mech. 127, 59. 

GOLDSTEIN, M. E. & LEIB, S. J. 1993a Three-dimensional boundary-layer instability and separation 
induced by small amplitude streamwise vorticity in the upstream flow. J .  Fluid Mech. 246, 21. 

GOLDSTEIN, M. E. & LEIB, S. J. 1993b A note on the distortion of a flat plate boundary layer by 
free-stream vorticity normal to the plate. J .  Fluid Mech. 248, 531. 

GOLDSTEIN, M .E., LEIB, S. J. & COWLEY, S. J. 1992 Distortion of a flat plate boundary layer by 
free-stream vorticity normal to the plate. J .  Fluid Mech. 237, 231. 

GULIAEV, A. N., KOZLOV, V. E., KUZNETSOV, V. R., MINEEV, B. I. & SECUNDOV, A. N. 1989 
Interaction of a laminar boundary layer with external disturbances. Izv. Akad. Nauk SSSR 
Mekh. Zhid. Gaza 6, 55. 

HUNT, J. C. R. & GRAHAM, J. M. R. 1978 Free-stream turbulence near plane boundaries. J .  Fluid 
Mech. 84, 209. 

KERSCHEN, E. J. 1991 Linear and Nonlinear Receptivity to Vertical Free-Stream Disturbances. ASME 
FED, vol. 1 14, p. 43. 

LIN, C. C. 1946 On the stability of two-dimensional parallel flows. Part 3. Stability in a viscous 
fluid. Q. Appl. Maths 3, 277. 

MORKOVIN, M. V. 1969 Critical evaluation of transition for laminar to turbulent shear layers 
with emphasis on hypersonically traveling bodies. Air Force Flight Dynamics Laboratory Rep. 

RUBAN, A. I. 1984 On Tollmien-Schlichting Wave Generation by Sound. Izv. Akad. Nauk SSSR 
Mekh. Zhid. Gaza 5,  44. 

RYZHOV, 0. S. & TIMPEEV, 0. A. 1995 Interaction of a potential vortex with a local roughness on a 
smooth surface. J.  Fluid Mech. 287, 21-33. 

SCHUBAUER, G. B. & SKRAMSTED, H. K. 1948 Laminar Boundary-Layer Oscillations and Transition 
on a Flat Plate. NACA Rep. 909. 

SMITH, F. T. 1979 On the non-parallel flow stability of the Blasius boundary layer. Proc. R. SOC. 
Lond. A 366, 91. 

SMITH, F. T., DOORLY, D. J. & ROTHMAYER A. P. 1990 On displacement-thickness, wall-layer and 
mid-flow scales in turbulent boundary layers, and slugs of vorticity in channel and pipe flows. 
Proc. R.  SOC. Lond. A 428,255. 

AFFDL-TR-68-149. 

STEWARTSON, K. 1970 On laminar boundary layers near corners. Q. J .  Mech. Appl. Maths 23, 137. 
SYCHEV, V. V., RUBAN, A. I., SYCHEV, VIC. V. & KOROLEV, G. L. 1987 Asymptotic Theory of Separated 

TANVEER, S. & SPEZIALE, C. G. 1992 Singularities of the Euler equation and hydrodynamic stability. 

~ R E N T ’ E V ,  E. D. 1981 Linear problem for vibration in subsonic boundary layer. Prikl. Mat. Mech. 

TERENT’EV, E. D. 1984 Linear problem for vibration performing harmonic oscillations with super- 

ZHUK, V. I. & RYZHOV, 0. S. 1980 Free interaction and stability of boundary layer in incompressible 

Flows. Moscow: Nauka. 

ICASE Rep. 92-54. 

45, 1049. 

critical frequency in subsonic boundary layer. Prikl. Mat. Mech. 48, 264. 

fluid flow. Proc. Akad. Nauk SSSR 253, 1326. 


